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Abstract. The paper builds the comparative calibration model with a polynomial calibration
function. The model allows to consider possibly correlated data and combines the type A as
well as type B unceranities of measurements. From statistical point of view the model after
linearization could be represented by the linear errors-in-variables model (EIV).

1. Introduction
We suggest a procedure for fitting the calibration function. From statistical point of view the
calibration function expresses the ideal (true, errorless) values of the measurand (the measured
object, substance, or quantity) in units of the measuring instrument Y (typically the less
precise measuring instrument, the calibrated device) as a function of the true values of the
measurand in units of the measuring instrument X (typically the more precise instrument, the
standard). In other words, the calibration function expresses the relationship between the ideal
(true, errorless) values of measuring the same object (substance, quantity) by two measuring
instruments X and Y, respectively. The calibration function is supposed to be a polynomial
of degree p. Here we consider a model that allows to incorporate possibly correlated data and
combines the type A as well as type B uncertaities of the measurements (for more details on
metrological interpretation see the international standard [1]). Combined are the current stage-
of-knowledge probability distributions about values attributed to measurands and the statistical
techniques based on using the EIV model. This model allows using Monte Carlo Methods
[2] or characteristic function approach [5] to estimate the parameters, its state-of-knowledge
distributions, the approximate coverage intervals for the parameters and also properly evaluate
measurements with the calibration device, what is beyond the scope of the contribution.

2. Measurement procedure
Throughout the paper we shall assume that the following assumptions and restrictions for the
calibration model hold true: For building the calibration model we perform a pre-planned
calibration experiment with replicated measurements made by both instruments X (the more
precise one) and Y (the less precise one), on a set of m suitably chosen objects (substances,
quantities of interest), say V1, V2, . . . , VI , such that their true values µi, i = 1, 2, . . . , I, in
units of instrument X , span its (that is of instrument X ) appropriate calibration range.
The measurements are made repeatedly N times for each object measured by the measuring
instrument X and N times for each object measured by the measuring instrument Y.

http://creativecommons.org/licenses/by/3.0
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For the more precise instrument X the measurement result xi,n is a realization the n−th
measuring the i−th quantity, i.e. the realization of the random variable

ξXi,n = µi + Ti,n +

K∑
k=1

∆
(X,1)
i,n,k +

J∑
j=1

∆
(X,2)
j , i = 1, . . . , I, n = 1, ..., N (1)

where
µi are the true (unknown) values of considered quantities of interest in units of the more

precise measuring device X , i = 1, ...,m,
Ti,n are independent random variables representing our knowledge about the measurement

errors, with known zero-mean distributions (typically normal or t-distribution) and given
standard deviations ut, obtained from type A evaluations,

∆
(X,1)
i,n,k , i = 1, 2, ..., I, n = 1, 2, ..., N, k = 1, 2, ...,K, are corrections due to n−th measurement

the i−th object with the measuring device X with known distributions, zero mean and known
standard uncertainties u

∆
(X,1)
k

(type B measurements).

∆
(X,2)
j , j = 1, 2, ..., J are corrections common to all measurements realized with the

measuring device X with known distributions, zero mean and known standard uncertainties
u
∆

(X,2)
j

(type B measurements)

All corrections including the measuremets µi + Ti,n are independently distributed. The
distribution of ξXi,n , i = 1, . . . , I, n = 1, ..., N is the state-of-knowlwdge distribution (see
[1]).

Similarly the less precise instrument Y the measurement result yi,n is a realization the n−th
measuring the i−th quantity, i.e. the realization of the random variable

ξYi,n = νi +Ri,n +

M∑
m=1

∆
(Y,1)
i,n,m +

R∑
r=1

∆
(Y,2)
j , i = 1, . . . , I, n = 1, ..., N (2)

where
νi are the true (unknown) values of considered quantities of interest in units of the less precise

(calibrated) measuring device Y, i = 1, ..., I,
Ri,n are independent random variables representing our knowledge about the measurement

errors, with known zero-mean distributions (typically normal or t-distribution) and given
standard deviations uR, obtained from type A evaluations.

∆
(Y,1)
i,n,m, i = 1, 2, ..., I, n = 1, 2, ..., N, m = 1, 2, ...,M , are corrections due to n−th

measurement the i−th object with the measuring device Y with known distributions, zero mean
and known standard uncertainties u

∆
(Y,1)
m

(type B measurements).

∆
(Y,2)
r , r = 1, 2, ..., R are corrections common to all measurements realized with the

measuring device Y with known distributions, zero mean and known standard uncertainties
u
∆

(Y,2)
r

(type B measurements)

All corrections including in the measuremets Ri,n are independently distributed. The
distribution of ξYi,n , i = 1, . . . , I, n = 1, ..., N is again the state-of-knowledge distribution
(see [1]). Let us denote T n = (T1,n, ..., TI,n)

′, µ = (µ1, ..., µI)
′, ν = (ν1, ..., νI)

′, Rn =
(R1,n, ..., RI,n)

′, n = 1, 2, ..., N, 1 = (1, 1, ..., 1)′ ∈ RI , ξXn
= (ξX1,n , ξX2,n , ..., ξXI,n

)′, ξYn
=

(ξY1,n , ξY2,n , ..., ξYI,n
)′, i = 1, ..., I, n = 1, 2, ..., N, µ = (µ1, µ2, ..., µI)

′, ν =

(ν1, ν2, ..., νI)
′,∆

(X,1)
n,k = (∆

(X,1)
1,n,k ,∆

(X,1)
2,n,k , ...,∆

(X,1)
I,n,k )

′, n = 1, 2, ..., N, k = 1, 2, ...,K,∆
(Y,1)
n,m =

(∆
(Y,1)
1,n,m,∆

(Y,1)
2,n,m, ...,∆

(Y,1)
I,n,m)′, n = 1, 2, ..., N, m = 1, 2, ...,M .
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The model of measurement can be written as

ξXn
= µ+T n+

K∑
k=1

∆
(X,1)
n,k +

J∑
j=1

∆
(X,2)
j 1, ξYn

= ν+Rn+

M∑
m=1

∆(Y,1)
n,m +

R∑
r=1

∆
(Y,2)
l 1, n = 1, ..., N,

(3)

We denote u2x1
the known value u2t +

∑K
k=1 u

2

∆
(X,1)
k

and u2y1 the known value u2R +
∑M

m=1 u
2

∆
(Y,1)
m

.

Further let
∑J

j=1 u
2

∆
(X,2)
j

= u2x2
and

∑R
r=1 u

2

∆
(Y,2)
r

= u2y2 . So the random vector ξXn
, n =

1, 2, ..., N has its mean value E(ξXn
) = µ, covariance matrix cov(ξXn

) = u2x1
II,I + u2x2

EI,I

(E = 11′) and cov(ξXt
, ξXu

) = u2x2
E t ̸= u.

Similarly the random vector ξYn
, n = 1, 2, ..., N has its mean value E(ξYn

) = ν, covariance
matrix cov(ξYn

) = u2y1II,I + u2y2EI,I and cov(ξYt
, ξYu

) = u2y2E, t ̸= u.
The calibration function is supposed to be a polynomial of degree p, i.e.

ν(µi) =

p∑
j=0

(0)αjµ
j
ia0 +

p∑
j=0

(1)αjµ
j
ia1 + ...+

p∑
j=0

(p)αjµ
j
iap, i = 1, 2, ..., I (4)

where parameters (0)αj , (1)αj , ..., (p)αj , j = 1, 2, ..., p are known, parameters a0, a1, ..., ap are
(unknown) coefficients (parameters) of the calibration function.

3. The calibration model
The vector of all measurements is ξ′ = (ξX1

, ξY1
, ξX2

, ξY2
, . . . , ξXN

, ξYN
)′ with the mean value

E(ξ) = 1N,1 ⊗
(
µ
ν

)
= (1N,1 ⊗ I2I,2I)

(
µ
ν

)
,

(⊗ means the Kronecker product) and covariance matrix

Σ = cov(ξ) = IN,N ⊗
(
u2x1

II,I 0
0 u2y1II,I

)
+EN,N ⊗

(
u2x2

EI,I 0
0 u2y2EI,I

)
(a known matrix). The (unknown) parameters µ,ν,a = (a0, a1, ..., ak)

′ are bounded with
a nonlinear system of conditions (4). This calibration model is an errors-in-variables
model, see [3]. We shall linearize the system (4) of nonlinear conditions in proper values
(k)µ1,

(k)µ2, ...,
(k)µI ,

(k)ν1,
(k)ν2,

..., (k)νI ,
(k)a0,

(k)a1, ...,
(k)ap using Taylor expansion. Let us denote (k)∆µ1 = µ1 −

(k)µ1,
(k)∆µ2 = µ2 − (k)µ2, ...

(k)∆µI = µI − (k)µI ,
(k)∆ν1 = ν1 − (k)ν1,

(k)∆ν2 =
ν2 − (k)ν2, ...,

(k)∆νI = νI − (k)νI ,
(k)∆a0 = a0 − (k)a0,

(k)∆a1 = a1 − (k)a1, ...,
(k)∆ap =

ap − (k)ap. After neglecting the terms of 2−nd an higher order and denoting (k)µ′ =

( (k)µ1, ...,
(k)µI)

′, (k)ν ′ = ( (k)ν1, ...,
(k)νI)

′, (k)∆µ′ = ( (k)∆µ1, ...,
(k)∆µI)

′, (k)∆ν ′ =
( (k)∆ν1, ...,

(k)∆νI)
′, (k)∆a′ = ( (k)∆a0, ...,

(k)∆ap)
′, (k)ξ = (ξX1

− (k)µ, ξY1
− (k)ν, . . . , ξXN

−
(k)µ, ξYN

− (k)ν)′, we finally obtain the regression model with type-II (linear) conditions [4] with

parameters (k)∆µ, (k)∆ν, (k)∆a

E( (k)ξ) = (1N,1 ⊗ I2I,2I)

(
(k)∆µ
(k)∆ν

)
= X

(
(k)∆µ
(k)∆ν

)
, (5)

Σ = cov( (k)ξ) = II,I ⊗
(
u2x1

II,I 0
0 u2y1II,I

)
+EI,I ⊗

(
u2x2

EI,I 0
0 u2y2EI,I

)
(6)
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and with a system of linear conditions (with proper matrices (k)B1,
(k)B2 and vector (k)b)

(k)b+ ( (k)B1
...− II,I)

(
(k)∆µ
(k)∆ν

)
+ (k)B2

(k)∆a = 0. (7)

This model is a linear approximation of the original model. As we are closer with values
(k)µ1,

(k)µ2,...,
(k)µI ,

(k) ν1,
(k) ν2, ...,

(k) νI ,
(k) a0,

(k) a1, ...,
(k) ap to the true values µ, ν,a, the more

acurate are the estimates µ̂, ν̂, θ̂. In the k−th iteration step (k = 1, 2, ...) are the estimators
(k)µ̂ = (k−1)µ+ (k−1)∆̂µ, (k)ν̂ = (k−1)ν + (k−1)∆̂ν, (k)â = (k−1)a+ (k−1)∆̂a.

4. The BLUE of the calibration model parameters
The BLUE of the parameters of (calibration) model (5) with (linear) constraints on parameters
(7) is (according to [4])

(
(k)∆̂µ
(k)∆̂ν

)
(k)∆̂a

 = −

(
(X ′Σ−1X)−1(B1

...− I)′ (k)Q11
(k)Q21

)
(k)b+

I − (X ′Σ−1X)−1(B1
...− I)′ (k)Q11(B1

...− I)

(k)Q11(B1
...− I)

 (X ′Σ−1X)−1X ′Σ−1 (k)ξ,

where(
(k)Q11

(k)Q12
(k)Q21

(k)Q22

)
=

(
( (k)B1

...− II,I)(X
′Σ−1X)−1( (k)B1

...− II,I)
′ (k)B2

(k)B′
2 0

)−1

.

The covariance matrix of (k)∆̂a is

cov( (k)∆̂a) = (k)B′
2

(
( (k)B1

...I)(X ′Σ−1X)−1( (k)B1
...I)′
)−1

(k)B2.

5. Conclusions
Introduced was the model of polynomial calibration. The characteristic function approach [5]
is able to estimate the parameters, their state-of-knowledge distributions, the approximate
coverage intervals for the parameters and also properly evaluate measurements with the
calibration device. This approach is an alternative approach to Monte Carlo Methods [2]. But
description of this method is beyond the scope of the contribution.
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